
What Time is It in Your Test Bed? 1

What Time Is It In Your Test Bed?
Understanding the Benefits of Clock Simulation

Jack Di Giacomo
TANDsoft, Inc.

Flash backward! It’s 11:59 pm, December 31, 1999. The world is about to run amuck. When

the clock strikes midnight, all applications not Y2K-compliant will reset to the year 1900.

Planes will fall from the sky, nuclear missiles will mistakenly launch, and failed power grids will

cause catastrophic blackouts. Worst of all, the pre-record functions of VCRs will cease

operation.

As we now know, the world did not descend into chaos on January 1, 2000. Despite dire

predictions of global computer meltdown, the Y2K bug quickly became an historical footnote. In

the early days of computing, back in the 1950s, 1960s and 1970s, programmers abbreviated

years in a two-digit format (4/5/68 instead of 4/5/1968) to save expensive, scarce storage space

on punch cards and later disk. Even back then, some scientists began lobbying for a four-digit

year in anticipation of the rollover to the new millennium. They were dismissed as alarmists; the

millennium was a long way off. Not until 1993, when curious staff at NORAD (North American

Aerospace Defense Command) turned their system clocks forward to January 1, 2000, and

watched as the ICBM alert system crashed, did governments, industries and individuals begin to

react seriously to the Y2K bug.

When they finally reacted, they responded en masse. The global campaign to address the “time

bomb” required everyone to upgrade their systems for Y2K compliance. How to accomplish that

and then test for success was the challenge. How could developers recreate the millennium

rollover without changing the system clock and risking a crash? Out of that challenge grew a

new industry, one providing clock-simulation tools that could feign the date of January 1, 2000,

without affecting normal system operation.

Clock Simulation Has Value Today

The need for clock simulation did not disappear at the stroke of midnight on January 1, 2000. If

anything, the Y2K problems found in practically every programming language exposed the

shortsightedness of the computer industry in not developing applications with time sensitivity in

mind. Some recent examples include:

- Y2K7 bug – caused by the Daylight Saving Time (DST) date change in 2007 and affected any

device that automatically corrected its system clock to the earlier DST date.

What Time is It in Your Test Bed? 2

- Z2K9 bug (or the Zune bug of 2008) – Leap Year was not kind to owners of Microsoft’s 30-

gigabyte Zune MP3 player. Zunes around the world crashed at midnight on December 31,

2008, due to a problem with the player’s internal clock.

- Y2K38 bug (or Unix Millennium bug) – software and systems that store system time as a

signed 32-bit integer will be affected in 2038.

Clock simulation today is valued by companies whose development, testing, quality assurance

and other applications are carried out on the same system. Recently, the popular move to data

consolidation has accelerated the practice.1 The resulting dilemma is that multiple developers

working on multiple applications need to test their programs before putting them into production.

With only one system available, how to accomplish that in the limited time available presents a

challenge. When the programs to be tested require different date/time specifications, how to

certify these applications without constantly changing the system clock becomes more than

problematic. The solution is clock simulation.

Traditional Testing Approach

Without clock simulation, an application must rely on the system clock; and all applications

running on that system must use the same date/time configuration. In such an environment, the

traditional approach to testing applications is to change the system date and time. That’s risky,

to say the least, and presents myriad and often unforeseen challenges. Here’s a few:

 System clock changes affect all programs running on a system, not just the application

being tested.

 Resetting the system clock increases the time required for project development. Once the

system clock is reset to local time, a system reboot may be necessary, applications must be

reloaded, and each application’s proper operation must be verified. It may also require that

all users be logged off before resetting takes place.

 Forgetting to restore the system clock to its original state after testing or some other activity

is completed may deny other users access to the system and may prevent applications from

running at all. Software licenses and passwords may immediately expire.

 Often, only one time-sensitive process can be tested at a time, further delaying an

application’s deployment.

1 See my previous article, Application Jet Lag – Consolidating Global Data Services, in the May/June
2009 issue of The Connection.

What Time is It in Your Test Bed? 3

 Imagine the complicated, labor-intensive coordination required between IT administrators

and application-specific staff every time the system clock needs to be reset.

Benefits of Clock Simulation

With clock simulation, test, maintenance, and development protocols can be undertaken much

more efficiently and will be less prone to errors. Applications already executing do not risk

disruption from tests performed on other processes because normal system operation is

unaffected.

 Multiple applications, including test suites, can be evaluated simultaneously and cost-

effectively while coexisting on a consolidated system, with each application benefiting from

use of its own virtual clock. Applications not involved in testing will continue to operate off

the system clock.

 Third-party solutions and utilities can be tested thoroughly prior to incorporating them into

stable production systems.

 Clock simulation offers a cost-effective alternative to the expensive capital investment in

hardware, software licenses, and IT resources that would otherwise be required to

implement duplicate testing environments.

 Production consistency in batch-processing applications can be verified by testing overnight

runs for date continuity.

 Disaster-recovery efforts can be expedited by allowing last week’s work to run at the same

time as this week’s work.

 Forward-test such unusual circumstances as Leap Year rollovers or month-end processing

on public holidays.

 Time-sensitive testing can be performed round-the-clock, not relegated to after-hours or

weekends.

How Clock Simulation Works – A Representation

Whether you build an in-house product or purchase a third-party solution, clock simulation

generally is based on the creation of intercept libraries. They provide virtual system times

arbitrarily offset from current time, typically in the future but in some cases in the past. Services

What Time is It in Your Test Bed? 4

are offered via application-groups, the definition of which can be flexible. Using grouping and

wild cards, an application group can consist of a specified set of programs, a specified set of

processes, a specified set of users, the descendants of a common ancestor, and so on. An

application group can be defined to include only a single user or process. If an application is not

defined within any application group, it continues to operate off the normal system time. A

system can host many application groups, and each application group can specify its own time

offset.

Via the intercept libraries, clock simulation is accomplished by intercepting system-time calls.

No matter the application, the programming language, the system type, the program type, or the

operating environment, all time calls ultimately generate a system call to a handful of operating-

system procedures. They return a fixed or dynamic time in one or more formats, such as

date/time or a Julian timestamp. Employing a command interface, a user can enter a date and

time to be used by an application group. Thus, whenever a process within the application group

makes a time call, the clock-simulation product will intercept it and will return a time that is

appropriately offset from the system clock. Most third-party clock-simulation products require no

application modifications to a system.

Clock Simulation Products

The following companies offer date/time simulation tools for a variety of HP platforms.

1. OPTA2000™ (TANDsoft, Inc.) – www.tandsoft.com

Clock simulation for HP NonStop servers. Offers a virtual date/time at any point in the past

or future for development and test purposes. OPTA2000 requires no application

modifications and supports virtually all NonStop environments, including S-series, Itanium,

and Blades. OPTA2000 allows existing production, development, and backup systems to

support worldwide consolidated environments. It eliminates the need to change system

clocks in order to test time-sensitive environments.

What Time is It in Your Test Bed? 5

2. Time Machine® (Solution-Soft) – www.solution-soft.com

A time and date simulation tool that speeds application testing and deployment for HP 3000

MPE, Linux, Windows, and HP-UX servers. No application modifications are necessary,

and there is no need to alter the system clock. Time Machine can simultaneously run up to

20,000 individually defined virtual clocks. A powerful application for testing “what if”

scenarios on systems resources and programs.

3. HourGlass™ – (Allegro Consultants, Inc.) – www.allegro.com

A date/time simulation tool that offers extensive support for testing batch and online

application programs with future or past dates and times. HourGlass is available for HP

e3000 (MPE/iX), HP 9000 servers, and HP Integrity Servers (HP-UX). Installation is simple

and requires a single reboot.

4. DateWarp® (Vedant Incorporated) – www.vedanthealth.com

A system clock simulator for the automated validation and testing of HIS (health information

services) applications. A useful tool for adding realistic complexity to test designs, thereby

minimizing the problems associated with resetting the real system clock. Available for

OpenVMS and VAX operating systems.

Clock Simulation In Practice

 The User Acceptance Testing (UAT) group of a major enterprise comprises five test groups.

Each group is responsible for ensuring the functionality of new applications or application

upgrades before they are put into production. Applications include custom applications and

third-party applications such as ACI’s Base24. Each of the five groups had its own NonStop

S-series server for acceptance testing and quality control. Recently, however, the company

decided to consolidate the five servers into two NonStop Itanium servers to be shared by all

five test groups. Many of the applications being tested are time-sensitive and must be

tested under different date/time scenarios. The UAT group successfully employs clock

simulation to facilitate acceptance testing of multiple applications running simultaneously on

the same server but requiring different date/time environments.

 A global telecommunications company uses HP-UX servers for its Accounts Receivable

(AR) development and testing environments. The company routinely needs to perform time-

sensitive tests to certify that the AR system will perform accurately at the end of each month,

each quarter, and each fiscal year. The company originally undertook the traditional

approach of shutting down all time-sensitive processes, changing the system date for each

process to be tested, testing the programs, reverting back to the system clock’s original

What Time is It in Your Test Bed? 6

time, and then restarting all the system applications. This process created a significant

delay in the deployment timetable. After brief consideration of incurring the expense to

implement multiple duplicate environments, the company chose a date/time simulation

product that gives them the ability to run simultaneous time offsets within a single system.

 A prescription drug insurance provider manages both public and private plans for Canadian

citizens. The company uses two S7400 NonStop servers for their applications, one server

for production and the other for backup, development and testing. Prescription

drug requirements change regularly, and the company must test a multitude of application

updates in advance of placing them into production. For instance, a particular medication

may cost a certain amount before September 1st but have a different price after September

1st. A generic drug unavailable before November 15th may come on the market after

November 15th. A medication covered by insurance one month may not be covered the next

month. Testing every change by altering the system clock is infeasible, so the company

uses virtual clock simulation to forward-date the test protocols in order to identify any coding

errors.

Less Than 7,991 Years to Go Until Y10K

Flash forward! It’s 11:59 pm, December 31, 9999. The world is about to run amuck. Y2K’s

quick fix to four-digit year formats only lasted for 8,000 years - so here we are again. When the

clock strikes midnight, all applications not Y10K-compliant will reset to 0000, or Year 0. Space

colonies will fall out of orbit, neural networks will disintegrate, bionic limbs will cease to function,

and even more VCRs will bite the dust.

Of course, it is the current and widespread belief that the year 10,000 is a long way off. Today’s

software designers, as did their colleagues of the mid-20th century, assume that their programs

eventually will be replaced. Like cockroaches, however, software routines seem to possess a

potentially infinite lifespan. Who truly knows what errant line of 21st century code will embed

itself into 101st century technology.

For those of us planning to be around on that date via upcoming breakthroughs in life-extension,

cryonics, or time travel, the Y10K bug is an impending reality. Some industries, such as those

that examine proposals for the long-term handling of nuclear waste, already are developing

modeling programs with five-digit formats.

You can bet that those programs are not being tested by resetting a system clock. What’s

making the difference in predicting the future? Clock simulation - it’s all about feigning the time.

